

## Air-cooled Vibration Test Systems

# A11/SA1HAM A11/EM1HAM



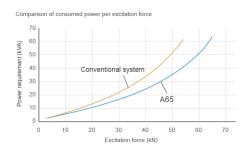


A-series is the "new standard" in vibration testing, with a solid test performance.

A-series increases the relative excitation force and has a displacement of 76.2 mmp-p (3 inch stroke) \*1 which gives good balance between specification of velocity, acceleration and displacement.

It also provides a maximum of 3.5 m/s shock velocity testing, which responds to the demand in lithium battery testing. Rapid creation of a test from a set of pre-defined templates conforming to most international test standards. Simply select the standard required to generate the main test settings.

\*1) Only for A30, A45, A65, A74


#### 1. Improvement of performance

Expansion of test cases and responses to high spec. tests allow the A-series to meet a wide range of testing needs.

- · Improvement in excitation force
- · Standard 76.2 mmp-p displacement
- · Expansion in frequency range
- · High velocity shock test

#### 2. User friendly and secure

Greater security and functionality with improved energy savings.



#### 3. User first principle

Intuitive interface guides the operator for easy use.







### Air-cooled Vibration Test Systems

## A11/SA1HAM A11/EM1HAM



| System Specification       |                                    |                |                |  |  |
|----------------------------|------------------------------------|----------------|----------------|--|--|
| System Model               |                                    | A11/<br>SA1HAM | A11/<br>EM1HAM |  |  |
| Frequency Range (Hz)       |                                    | 0-4,500 *4     | 0-4,500 *4     |  |  |
| Rated<br>Force             | Sine (kN)                          | 11             | 11             |  |  |
|                            | Random (kN rms) *1                 | 11             | 11             |  |  |
|                            | Shock (kN)                         | 22             | 22             |  |  |
|                            | High Velocity Shock (kN)*5         | -              | 16.5           |  |  |
| Maximum<br>Acc.            | Sine (m/s²)                        | 1,000          | 1,000          |  |  |
|                            | Random (m/s² rms)                  | 630            | 630            |  |  |
|                            | Shock (m/s²)                       | 2,000          | 2,000          |  |  |
|                            | High Velocity Shock (m/s² peak) *5 | -              | 1,500          |  |  |
| Maximum<br>Vel.            | Sine (m/s)                         | 2.0            | 2.0            |  |  |
|                            | Shock (m/s peak)                   | 2.5            | 2.5            |  |  |
|                            | High Velocity Shock (m/s peak)*5   | -              | 3.5            |  |  |
| Maximum                    | Sine (mmp-p)                       | 51             | 51             |  |  |
| Disp.                      | High Velocity Shock (mmp-p)        | -              | 55             |  |  |
| Maximum Travel (mmp-p)     |                                    | 64             | 64             |  |  |
| Maximum Load (kg)          |                                    | 200            | 200            |  |  |
| Power Requirements (kVA)*2 |                                    | 20.4           | 20.4           |  |  |
| Breaker Capacity (A) *3    |                                    | 40             | 40             |  |  |

| Vibration Generator (A11)         |       |  |  |
|-----------------------------------|-------|--|--|
| Armature Mass (kg)                | 11    |  |  |
| Armature Diameter ( $\phi$ mm)    | 210   |  |  |
| Armature Resonance (Hz)           | 3,160 |  |  |
| Allowance Eccentric Moment (N·in) | 294   |  |  |
| Mass (kg)                         | 1,080 |  |  |

|   | Power Amplifier      | SA1HAM-<br>A11 | EM1HAM-<br>A11 |
|---|----------------------|----------------|----------------|
| 1 | Maximum Output (kVA) | 12             |                |
|   | Mass (kg)            | 280            | 330            |

| Cooling (VAPC630/P2R1)             |                 |      |  |  |  |
|------------------------------------|-----------------|------|--|--|--|
| Mass (kg)                          | 150             |      |  |  |  |
| Cooling Air Flow (m <sup>3</sup> / | 15              |      |  |  |  |
| Environmental Data                 |                 |      |  |  |  |
| Input Voltage Supply               | 380/400/415/440 |      |  |  |  |
| Compressed Air Supp                | 0.7             |      |  |  |  |
| Working Ambient<br>Temperature     | Shaker (°C)     | 0-40 |  |  |  |
|                                    | Amplifier (°C)  | 0-40 |  |  |  |

- \*1) Random force ratings are specified in accordance with ISO5344 conditions. Please contact IMV or your local distributor with specific test requirements..
- \*2) Power supply: 3-phase 380/400/415/440 V, 50/60 Hz. A transformer is required for other supply voltages.
- \*3) Breaker capacity for 480 V.
- \*4) Above 4000 Hz, the force rolls-off at a rate of -6 dB/oct.
  \*5) Maximum velocity 4.6 m/s. High velocity restricts maximum Shock force.
- \*6) Measured 150 mm above table at full-field.
- \* The specification shows the maximum system performance.
- For long-duration tests, de-rating by up to 70 % must be applied. Continuous use at maximum levels may cause failure.
- \* In the case of Random vibration test, please set the test definition of the peak value of acceleration
- waveform to be operated less than the maximum acceleration of Shock.
- \* Frequency range values vary according to sensor and vibration controller.
  \* Armature mass and acceleration may change when chamber is combined.

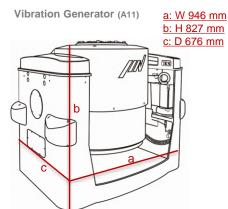
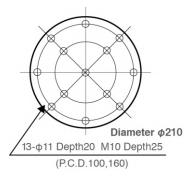
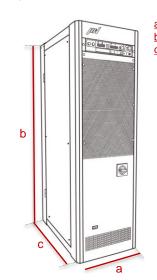





Table Insert Pattern (unit: mm)



Amplifier (SA1HAM-A11/EM1HAM-A11)



a: W 1,023 mm a: W 580 mm b: H 2,285 mm b: H 1,950 mm c: D 531 mm c: D 850 mm

**Blower** 

